The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defence in skeletal muscles
نویسندگان
چکیده
The transcriptional coregulators PGC-1α and PGC-1β modulate the expression of numerous partially overlapping genes involved in mitochondrial biogenesis and energetic metabolism. The physiological role of PGC-1β is poorly understood in skeletal muscle, a tissue of high mitochondrial content to produce ATP levels required for sustained contractions. Here we determine the physiological role of PGC-1β in skeletal muscle using mice, in which PGC-1β is selectively ablated in skeletal myofibres at adulthood (PGC-1β((i)skm-/-) mice). We show that myofibre myosin heavy chain composition and mitochondrial number, muscle strength and glucose homeostasis are unaffected in PGC-1β((i)skm-/-) mice. However, decreased expression of genes controlling mitochondrial protein import, translational machinery and energy metabolism in PGC-1β((i)skm-/-) muscles leads to mitochondrial structural and functional abnormalities, impaired muscle oxidative capacity and reduced exercise performance. Moreover, enhanced free-radical leak and reduced expression of the mitochondrial anti-oxidant enzyme Sod2 increase muscle oxidative stress. PGC-1β is therefore instrumental for skeletal muscles to cope with high energetic demands.
منابع مشابه
Mechanisms of Hyperhomocysteinemia Induced Skeletal Muscle Myopathy after Ischemia in the CBS−/+ Mouse Model
Although hyperhomocysteinemia (HHcy) elicits lower than normal body weights and skeletal muscle weakness, the mechanisms remain unclear. Despite the fact that HHcy-mediated enhancement in ROS and consequent damage to regulators of different cellular processes is relatively well established in other organs, the nature of such events is unknown in skeletal muscles. Previously, we reported that HH...
متن کاملIKKα and alternative NF-κB regulate PGC-1β to promote oxidative muscle metabolism
Although the physiological basis of canonical or classical IκB kinase β (IKKβ)-nuclear factor κB (NF-κB) signaling pathway is well established, how alternative NF-κB signaling functions beyond its role in lymphoid development remains unclear. In particular, alternative NF-κB signaling has been linked with cellular metabolism, but this relationship is poorly understood. In this study, we show th...
متن کاملResponses of Muscle Mitochondrial Function to Physical Activity: A Literature Review
Skeletal muscles play an active role in regulating the metabolic homeostasis through their ability for relating to adipose tissue and endocrine hormones. Contraction of the skeletal muscle leads to increased release of several myokines, such as irisin, which is able to interact with the adipose tissue. Physical activity promotes the irisin mechanism by augmenting the peroxisomes (PGC1-α) in the...
متن کاملبررسی اثر فعالیت استقامتی بر میزان بیان ژن pgc-1 آلفا عضلات نعلی و بازکنندهی بلند انگشتان در موشهای صحرایی نر بالغ
Background and Objective: Endurance activity affects muscle gene expression leading to the improvement of its function and effectiveness. Meanwhile, PGC-1 alpha transcription factor increases mitochondrial biogenesis in skeletal muscles. This study was designed to investigate the effect of an endurance activity program on pgc-1 alpha expression gene of fast and slow twitch muscles. Materials...
متن کاملContinuous Swimming Training Arises a Remarkable Effect on Some Longevity Biomarkers in Rat Skeletal Muscles
Background. SIRT3 is one of the members of the Sirtuin deacetylase protein family which is linked to the longevity of human being and is used as an important therapeutic and diagnostic marker in illness and aging. Objectives. The aim of this study was studying the effect of continuous swimming training on some biomarkers of longevity in slowtwitch (SOL) and fast-twitch (EDL) muscles of adult m...
متن کامل